Broward College
STA2023 – Statistics

Instructor: Carlos Sotuyo
Term/Session: Spring 2020, session 1

Instructor’s BC E-mail: csotuyo@broward.edu
Reference No.: 648612

Office Hours: W: 5:50 pm – 6:20 pm
Office: Bldg 69, Room 237
Class Days: Wednesday
Class Time: 6:30 pm to 9:15 pm

Math Department Phone Number: (954) 201-8920
(954) 201-8975 (FAX)
Classroom: Blackboard (online)

Emergency Phone Number: (954) 201-4357 (Safety)
(954) 201-4900 (Hotline)
Withdrawal Date: Jan 13, withdraw 100% refund
Credit to Audit Date: March 20, withdraw with W.

Please check the Academic Calendar at http://www.broward.edu/calendar/Pages/term-dates.aspx

No classes: Monday, January 20, Martin Luther King, Jr AND Monday; March 2 – Sunday, March 8, Spring Break
Last Day To Drop Class With 100% Refund (Spring Term Session 1): January 13
Last Day To Drop Class With W (Spring Term Session 1): March 20

COURSE DESCRIPTION:
A first course in statistical methods including such topics as collecting, grouping, and presenting data; measures of central tendency, position, and variation; theoretical distributions; probability; test of hypotheses; estimation of parameters; and correlation. Use of statistical computer software and/or a scientific calculator (capable of performing 2-variable statistics) will be required.

GENERAL OUTCOMES:
Upon completion of this course, students will be able to:
• Organize, summarize, and illustrate data both in table and in graph form, as well as be able to interpret the meanings of such tables and graphs.
• Calculate measures of location, central tendency and dispersion, and distinguish between population parameters and sample statistics.
• Apply the definitions and rules of probability to solve problems involving discrete variables.
• Determine the probability distribution for a given experiment and random variable and calculate its mean and standard deviation.
• Solve problems using normal distributions and apply the Central Limit Theorem for sample means.
• Demonstrate an understanding of the concepts and structure of hypothesis testing and by performing hypothesis tests in various situations.
• Apply the hypothesis testing concepts to a wide variety of different situations.
• Determine point and interval estimates for population parameters and to determine sample sizes for the estimation of parameters.
• Calculate the correlation coefficient, determine if there is a significant linear correlation, and find the line of best fit.

PREREQUISITE:
Recommendation of the Mathematics Department or at least a grade of C in the prerequisite course (MAT1033 or STA1001) is required.

TEXTBOOK:

SUPPLEMENTAL MATERIAL:
A **Scientific Calculator** or **Graphing Calculator** is required in each lecture. Formula and charts attached in your textbook. A Graphing Calculator, TI 83, TI 84 or Casio fx-9750 is **strongly recommended**.

HOMEWORK:
MyStatLab (MSL) is the homework component and is worth 200 points. MyStatLab Access Code is required. E-book is included with the purchase of MSL. http://mystatlab.com. Registration for mymathlab ends February 2nd. MyStatLab: **User Name:** Student ID, **Password:** broward. This is a generic password that you may change it later. You will have access to the class immediately and be prompted to enter your access code. You may choose the 14 days temporary free access if you are not ready to purchase the code immediately. After the 14 days period expired, an access code must be required. **Instructor’s course ID:** sotuyo34755.

ASSISTANCE:
Academic Success Center (ASC):
The ASC centers at Broward College are here to ensure your success in this class. You will benefit from an array of academic support services provided in a comfortable, collaborative atmosphere specifically designed to advance your academic achievement: http://www.broward.edu/studentresources/lrc/Pages/default.aspx

Here are just some of the services provided at the ASC:
- Academic Support Labs (Science Center, Math Lab, Writing Center)
- Collaborative Project Space
- Graphing Calculators
- Open Computer Centers (Printing)
- Study Groups
- Textbook Reserves
- Tutoring by Certified Tutors (All subject areas)

Seahawk Support Program:
The Seahawk Support Program is a coordination between students, faculty, the Office of Student Success, and the ASC designed to support students in order to increase their chances of success. If you are contacted by a representative of the Office of Student Success or the ASC, please take full advantage of this excellent opportunity to improve your success in this course.

CELL PHONE POLICY:
Put your cell phone away on “silent-mode”. Cell phones, smart phones, iPod, and other similar devices are not allowed to be used as calculator during class time and Tests.

METHOD OF INSTRUCTION AND EVALUATION:
In this class, you will engage in structured in-class and out-of-class activities. You will achieve the course objectives through interactive lecture, in class practice problems, class participation, homework assignments, and assessments.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Grade Points</th>
<th>Percent of Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Tests</td>
<td>600</td>
<td>60%</td>
</tr>
<tr>
<td>MyStatLab Homework</td>
<td>200</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>200</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>100%</td>
</tr>
</tbody>
</table>

GRADING POLICY:
Your grade will be determined by taking the average of your test scores, homework and Final Exam:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Grading Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 – 100%</td>
</tr>
<tr>
<td>B</td>
<td>80 – 89.9%</td>
</tr>
<tr>
<td>C</td>
<td>70 – 79.9%</td>
</tr>
<tr>
<td>D</td>
<td>60 – 69.9%</td>
</tr>
<tr>
<td>F</td>
<td>0 – 59.9% or if a student commits an act of cheating/plagiarism</td>
</tr>
</tbody>
</table>

WITHDRAWALS:
Per college policy, W’s cannot be given after the official college-wide withdrawal deadline. It is the student’s responsibility to withdraw from the course by the deadline (see current Academic Calendar at http://www.broward.edu/calendar/Pages/term-dates.aspx). If you simply stop attending class without formally withdrawing from the course, you will receive a grade of “F”. A withdrawal is considered an attempt.

ACADEMIC ACCOMMODATIONS FOR STUDENTS WITH DISABILITIES:
If you are requesting academic accommodations, you must first register with Accessibility Resources (contact information is provided below). Accessibility Resources will evaluate your request and determine eligibility. If approved, you will be provided with an Accommodation Plan that you must deliver to me either electronically or in person. Once received, we will discuss which accommodations you are requesting for this class, and in accordance with Broward College policy 6Hx2-5.09 you will be provided with the appropriate accommodations. Students who wait until after completing the course, or an activity, to request accommodations should not expect any grade to be changed, or to be able to retake the course or activity.

South Campus, Miramar West Center, Pines Center, and Weston Center: 954-201-8913

ATTENDANCE POLICY:
You are required to attend all classes. There will be no penalty for a student who is absent from academic activities because of religious holiday observances in his/her own faith, the student’s serious illness, death in immediate family, or attendance to statutory governmental responsibilities. The students must notify the instructor of these absences, providing necessary documentation. It is the student’s responsibility to make up the work missed.

Important notice about Title IV attendance procedure: Starting Fall 2007, Faculty must report student non-attendance. If you do NOT attend first week of class and do NOT withdraw by end of drop/add period, then Instructor will assign grade of WN within next two weeks and you will not receive money back for the class. If you stop attending class prior the withdrawal date, you will be administratively withdrawn from class and receive a W or, if it is the third attempt, an F. If you stop attending class after the withdrawal date, you will receive an F that will then be computed as an F in their GPA. In either case, no refund will be given.

STATEMENT OF ACADEMIC DISHONEST:
Broward College expects its students to be honest in all of their coursework and activities. Breaches of academic honesty include, but are not limited to, cheating, plagiarism, misrepresentation, bribery, and the unauthorized possession of examinations, papers, or other class materials that have not been formally released by instructors. A student’s academic work must be the result of his or her own thought, research, or self-expression. The term “cheating” includes but is not limited to, copying homework assignments from another student; working together with another individual on a take-home test or homework when specifically prohibited from doing so by the instructor, looking at test, notes or another person’s paper during an examination when not permitted to do so. (See current BC catalog statement at www.broward.edu/catalog/).
STA 2023 Course Schedule

<table>
<thead>
<tr>
<th>Day/Date</th>
<th>Chapter</th>
<th>Topic and Learning Outcomes</th>
<th>Activities</th>
</tr>
</thead>
</table>
| Day 1 01/08 | 1.1 | Orientation, Introduction, Preview and Statistical Thinking | Text: 1.1/1.2 Statistical Thinking and Critical Thinking, 1.3 Types of Data
Read 1.1/1.2 p. 3 – 11
Read 1.3 p. 15 - 20 |
| | 1.2 | Types of Data | |
| | 1.3 | | |
| Day 1 01/08 | 2.1 | Frequency Distributions | Text: 2.1/2.2 Frequency Distributions
Read pages 43 - 50 in the textbook. |
| | 2.2 | Histograms | Text: 2.3 Histograms
2.3: Read pages 54 - 58 in the textbook. |
| | 2.3 | Stem and Leaf Plots | Text: 2.4 Graphs that Enlighten and Graphs that Deceive
2.4: Read pages 63 (Stemplots only) in the textbook. |
| Day 2 01/15 | 3.1 | Measures of Central Tendency | Text: 3.2 Measures of Center
Read pages 79 - 90 in textbook. |
| | 3.2 | Measures of Variation | Text: 3.3 Measures of Variation
Read pages 96-104 in textbook. |
| | 3.3 | Measures of Relative Standing | Text: 3.4 Measures of Relative Standing & Boxplots
Read pages 112-118 in textbook. |
| Day 3 01/22 | 4.1 | Basic Concepts of Probability | Text: 4.2 Basic Concepts of Probability
Read pages 132 - 144 in textbook. |
| | 4.2 | Addition Rule | Text: 4.3 Addition Rule
Read pages 149 - 152 in textbook. |
| | 4.3 | The Multiplication Rules: Basics | Text: 4.4 Multiplication Rule: Basics
Read pages 156-163 in textbook.
Read pages 168 - 171. |
| | 4.4 | Counting | Text: 4.6: Counting |
| Day 4 01/29 | Review of chapters 1, 2, 3 & 4 |
| Day 5 02/05 | Test 1 |
| Day 6 02/12 | 5.1 Random Variables
- Differentiate between discrete and continuous random variables.
- Given a distribution, decide whether it satisfies the requirements of a probability distribution.
- Calculate the mean (expected value) and standard deviation for a given random variable.
- Solve problems involving the expected value.
Text 5.2 Probability Distributions
Read pages 195 - 206 in textbook. |
| Day 6 02/12 | 5.2 Binomial Probability Distributions
- Decide whether a given distribution is binomial.
- Calculate the binomial probability using the table or technology.
- Calculate the binomial probability using the binomial formula.
Parameters for the Binomial Distribution
- Calculate the mean and standard deviation of a binomial distribution.
Text 5.3 Binomial Probability Distributions
Read pages 210 - 217 in textbook.
5.4 Parameters for Binomial Distributions
Read pages 223-225 in textbook. |
| Day 7 02/19 | 6.1 The Standard Normal Distribution
- Identify the properties of the standard and nonstandard normal distributions.
- Use the standard and nonstandard normal distributions to determine probabilities.
- Determine values in the standard and nonstandard normal distributions when given specific probabilities.
Text 6.2: The Standard Normal Distribution
Read pages 237 - 249 in textbook. |
| Day 7 02/19 | 6.2 Applications of the Normal Distribution
- Identify the properties of the standard and nonstandard normal distributions.
- Use the standard and nonstandard normal distributions to determine probabilities.
- Determine values in the standard and nonstandard normal distributions when given specific probabilities
Text 6.3 Applications of Normal Distributions
Read pages 270-276 in textbook. |
| Day 8 02/26 | 6.4 The Central Limit Theorem
- Explain the meaning of the Central Limit Theorem and its properties associated with the distribution of sample means.
- Use the Central Limit Theorem to determine probabilities for distributions of sample means.
Text 6.5 Central Limit Theorem
Read pages 278 - 285 in textbook. |
| Day 8 02/26 | 7.1 Estimating a Population Proportion
- Determine point estimates for population proportions.
- Construct confidence intervals for population proportions.
- Determine the sample sizes necessary to estimate population proportions within a given error.
Text 7.2 Estimating a Population Proportion
Read pages 317-331 in textbook. |
| Day 8 02/26 | 7.2 Estimating a Population Mean: σ known
- Determine point estimates for the population mean.
- Construct confidence intervals for the population mean.
Text 7.3 Estimating a Population Mean
Read pages 347-349 in textbook. |
| Day 9 03/11 | Review Chapters 5, 6, 7 |
| Day 10 03/25 | Test 2 |
| Day 11 03/25 | 8.1 Basics of Hypothesis Testing
- Determine the null and alternative hypotheses that would be used to test a claim.
- Describe, analyze, and differentiate between Type I and Type II errors.
- Determine the rejection region(s), and construct a sketch of the region(s). |
| 8.2 Testing a Claim about a Proportion
- Decide when to use the z statistic and be able to determine the correct values for this statistics for various hypothesis tests.
- Determine the p-value for a hypothesis test involving the z-test statistic.
- Calculate the sample z test statistic for given sample data.
- Decide whether to reject or fail to reject the null hypothesis based upon comparison of the test statistic value and the rejection region, or comparison of the p-value and the level of significance.
- Translate the hypothesis test conclusion into a meaningful holistic answer to the original problem situation.
- Students should be able use the traditional method to perform a hypothesis test by stating null and alternative hypotheses for a test, delineating the critical region for rejection of the null hypothesis, computing the appropriate test statistic, formulating the proper conclusion, and applying this structure to the tests of hypotheses regarding the proportion of a population by using a z statistic. |
| 8.2 Testing a Claim about a Mean
- Decide when to use the z statistic and be able to determine the correct values for this statistics for various hypothesis tests.
- Determine the p-value for a hypothesis test involving the z-test statistic.
- Calculate the sample z test statistic for given sample data.
- Decide whether to reject or fail to reject the null hypothesis based upon comparison of the test statistic value and the rejection region, or comparison of the p-value and the level of significance.
- Translate the hypothesis test conclusion into a meaningful holistic answer to the original problem situation.
- Students should be able use the traditional method to perform a hypothesis test by stating null and alternative hypotheses for a test, delineating the critical region for rejection of the null hypothesis, computing the appropriate test statistic, formulating the proper conclusion, and applying this structure to the tests of hypotheses regarding the proportion of a population by using a z statistic. |
| 8.3 Testing a Claim About a Proportion
Read pages 393 – 401 in the textbook. |
| 8.4 Testing a Claim About a Mean: 未知
Read pages 406 – 413 in the textbook. |
computing the appropriate test statistic, formulating the proper conclusion, and applying this structure to the tests of hypotheses regarding the mean of a population by using a z statistic.

Testing a Claim about a Mean: \(\sigma \) Not Known

- Decide when to use the t statistic, and be able to determine the correct values for this statistic for various hypothesis tests.
- Determine the p-value for a hypothesis test involving the t-test statistic.
- Calculate the sample t test statistic for given sample data.
- Decide whether to reject or fail to reject the null hypothesis based upon comparison of the test statistic value and the rejection region, or comparison of the p-value and the level of significance.
- Translate the hypothesis test conclusion into a meaningful holistic answer to the original problem situation.
- Students should be able use the traditional method to perform a hypothesis test by stating null and alternative hypotheses for a test, delineating the critical region for rejection of the null hypothesis, computing the appropriate test statistic, formulating the proper conclusion, and applying this structure to the tests of hypotheses regarding the mean of a population by using a t statistic.

| Day 12 | 04/01 | 9.1 9.2 | Inferences about Two proportions Inferences about Two Means: Independent Samples.
- Upon successful completion of this unit, the students should be able use the traditional method to perform a hypothesis test by stating null and alternative hypotheses for a test, delineating the critical region for rejection of the null hypothesis, computing the appropriate test statistic, formulating the proper conclusion, and applying this structure to the tests of hypotheses regarding the difference of two means when given two independent samples. | Text
9.3: Two Means: Independent Samples
Read pages 447 – 456 in the textbook. (Skip confidence intervals.) |
| Day 13 | 04/08 | Review chapters 8, 9 |
| Day 14 | 04/15 | Test 3 |
| Day 15 | 04/22 | Final review |
| Day 16 | 04/29 | Final Exam |

NOTE: Any changes in the Course Outline and Syllabus will be announced.