STA2023. Practice 8. Broward College. Answers

- 1) A
 - 2) C
 - 3) D
 - 4) B
 - 5) C
 - 6) D
 - 7) C
 - 8) B
 - 9) D
- 10) C
- 11) D
- 12) D
- 13) A
- 14) C

¹⁵⁾ H_0 : p = 0.03. H_1 : p > 0.03. Test statistic: z = 1.57. P-value: p = 0.0582. Critical value: z = 2.33. Fail to reject null hypothesis. There is not sufficient evidence to warrant rejection of the manager's claim that production is not really out of control.

16) H_0 : p = 0.01. H_1 : p > 0.01. Test statistic: z = 4.92. P-value: p = 0.0001.

Critical value: z = 2.33. Reject null hypothesis. There is sufficient evidence to warrant rejection of the claim that no more than 1% are defective. Note: Since the term "no more than" is used, the translation is $p \le 0.01$. Therefore, the competing hypothesis is p > 0.01.

¹⁷⁾ H_0 : p = 0.5. H_1 : p < 0.5. Test statistic: z = -1.31. P-value: p = 0.0951.

Critical value: z = -1.645. Fail to reject null hypothesis. There is not sufficient evidence to warrant rejection of the claim that at least half of all voters prefer the Democrat.

- 18) H₀: μ = 32.6. H₁: $\mu \neq$ 32.6. Test statistic: t = 4.36. Critical values: t = ±2.145. Reject H₀. There is sufficient evidence to warrant rejection of the claim that the mean is 32.6.
- 19) H_0 : $\mu = 2.85$. H_1 : $\mu > 2.85$. Test statistic: t = 1.85. Critical value: t = 2.896. Fail to reject H_0 . There is not sufficient evidence to support the claim that the mean is greater than 2.85.
- 20) H₀: μ = 35.0. H₁: $\mu \neq$ 35.0. Test statistic: t = 7.252. Critical values: t = -2.861, 2.861. Reject H₀. There is sufficient evidence to warrant rejection of the claim that the mean is equal to 35.0.
- 21) H₀: μ = 520 hrs. H₁: μ > 520 hrs. Test statistic: t = 2.612.

0.01 < P-value < 0.025. Reject H_0 . There is sufficient evidence to support the claim that the mean is greater than 520 hours.

- 22) $H_0: \mu = 14 \text{ oz.}$ $H_1: \mu \neq 14 \text{ oz.}$ Test statistic: t = 0.408. Critical values: $t = \pm 3.499$. Fail to reject H_0 . There is not sufficient evidence to warrant rejection of the claim that the mean weight is 14 ounces.
- 23) $\alpha = 0.1$
 - Test statistic: t = 1.57
 - P-value: p = 0.1318
 - Critical values: $t = \pm 1.729$

Because the test statistic, t < 1.729, we fail to reject the null hypothesis. There is not sufficient evidence to warrant rejection of the claim that $\mu = 132$ lb

24) $\alpha = 0.05$

Test statistic: t = -2.236

P-value: p = 0.0399

Critical values: $t = \pm 2.120$

Because the test statistic, t < -2.120, we reject the null hypothesis. There is sufficient evidence to warrant rejection of the claim that $\mu = \$30,000$

25) $\alpha = 0.01$

Test statistic: t = 2.6898 P-value: p = 0.0066 Critical value: t = 2.508 Because the test statistic, t > 2.508, we reject the null hypothesis. There is sufficient evidence to accept the claim that $\mu > 220,000$ miles

26) H0: $\mu = 22$; H1: $\mu \neq 22$. Test statistic: z = -10.33. P-value: 0.0002. Because the P-value is less than the significance level of $\alpha = 0.05$, we reject the null hypothesis. There is sufficient evidence to warrant rejection of the claim that the population mean temperature is 22° C.