Normal distribution using TI 84:

1. Given the population mean, \(\mu = 32 \); and, the population standard deviation, \(\sigma = 2.25 \), find:
 a) Probability of \(x < 30 \).
 b) Probability of \(x > 35 \).
 c) Probability of \(x \) greater than 30 and less than 35; that is \(P(30 < x < 35) \)
 d) If we choose 56 values of the random variable at random, and the sample mean is \(\bar{x} = 33 \),
 considering that the population standard deviation is 2.25, what is the probability that samples
 of the same size are less than 33?
 e) What is the \(x \) value that is above 99% of all other values of the variable?

ANWERS, TI 84:

Press 2\(^{nd}\) DIST:

\[\text{Press 2\(^{nd}\) DIST:} \]

\[\text{a) Probability of } x < 30: \]

TI84, choose normalcdf and enter the lower, upper, mean and standard deviation values.

\[\text{normalcdf} \]

\[\text{lower: } -1\times10^9 \]
\[\text{upper: } 30 \]
\[\mu: 32 \]
\[\sigma: 2.25 \]
\[\text{Paste} \]

The lower bound is negative infinite, represented by \(-\text{EE}99\) (Press the little negative, then 2\(^{nd}\), then the comma key, and then 99). For negative infinite you may also enter -10000 or -99999.

The answer to a) is 0.1870 rounded to four decimal places:

\[\text{normalcdf}(-1\times99,30,32,2.2) \]
\[\text{..............................},1870313608 \]

b) Probability of \(x > 35 \).

Greater than 35 means that 35 is the lower bound; the upper bound is infinity: E99. As follows:
The answer to b) is 0.0912 rounded to four decimal places:

```
normalcdf(35, e99, 32, 2.25)
```

\[0.0912112819\]

c) \(P_{(30 < x < 35)}\)

Lower bound is 30, upper bound is 35:

```
normalcdf(30, 35, 32, 2.25)
```

\[0.7217573574\]

d) For a random sample of the variable \(x\), of size \(n = 56\), the probability that samples means of the same size are less than 33:

In this case, the Central limit theorem applies; therefore, we divide the standard deviation by the square root of the sample size. This is a question of less than a value, as follows:

```
normalcdf(-e99, 33, 32, 2.25/sqrt(56))
```

Answer: The probability that samples of size 56 are less than 33, is about 0.9996:
e) The x value that is above 99% of all other values of the variable: In this case we know the probability or area, 0.99; choose Inverse Normal:

```
DISTR DRAW
1: normalPdf()
2: normalCdf()
3: invNorm()
4: invT()
5: tPdf()
6: tcdf()
7: chisqPdf()
8: chisqCdf()
9: Fcdf()
```

inv Norm in TI 84, again, we don’t need to remember the syntax:

```
invNorm
area: 0.99
μ: 32
σ: 2.25
Paste
```

The answer to d) is the variable x value that is above 99% of the population is x = 37.23, rounding to two decimal places.

```
invNorm(0.99, 32, 2.25)
.......................... 37.23428272
```