Limits of Functions and Limit Laws

NOTES 02

Instructor: Carlos Sotuyo

Example 1: [Taken form Anton & Biven Calculus, 10th ed.]

Use numerical evidence to show that the value of the following limit is 2:

$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1} = 2$$

x	0.99	0.999	0.9999	0.99999	_	1.0001	1.0001	1.001	1.01
f(x)	1.994987	1.999500	1.999950	1.999995	_	2.000005	2.000050	2.000500	2.004988

Definition:

We write:

$$\lim_{x \to a} f(x) = L$$

which is read the limit of f(x) as x approaches a is L.

Notice that as x approaches 1, the function value approaches 2.

We have used numerical and a graphical approach to analyze limits. Limits may also be found analytically.

Analytically, we can verify that the value of the limit is 2:

$$\lim_{x \to 1} \frac{x - 1}{\sqrt{x} - 1} = 2$$

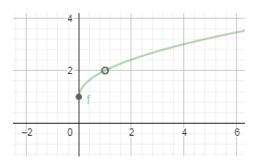
The function $f(x) = \frac{x-1}{\sqrt{x}-1}$ is not defined at x=1 When calculating limits we are interested in the function's behavior around c as $x \to c$ (in this case c=1.) Since the function is not defined at 1, let's explore an algebraically equivalent way of writing the given function:

$$\frac{x-1}{\sqrt{x}-1}\cdot\frac{\sqrt{x}+1}{\sqrt{x}+1}=\frac{(x-1)(\sqrt{x}+1)}{(x-1)}=\sqrt{x}+1 \text{ so we may say that:}$$

$$f(x) = \frac{x-1}{\sqrt{x}-1} = \sqrt{x}+1$$
 for $x \neq 1$. Therefore,

$$\lim_{x \to 1} \frac{x - 1}{\sqrt{x} - 1} = \lim_{x \to 1} \sqrt{x} + 1 = 2$$

Analyze the graph of $f(x) = \frac{x-1}{\sqrt{x}-1}$:



1.2 Computing limits:

Constant function: $\lim_{x\to a} k = k$, For a polynomial: $\lim_{x\to a} p(x) = p(a)$

Explain Theorem 1, Limits Laws:

If L, M, c and k are real numbers, and $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then:

- (a) The limit of a sum is the sum of the limits: $\lim_{x\to c}(f(x)+g(x))=L+M$
- (b) The limit of a difference is the difference of the limits: $\lim_{x\to c}(f(x)-g(x))=L-M$
- (c) The limit of a product is the product of the limits: $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$
- (d) The limit of a quotient is the quotient of the limits, provided the limit of the denominator is not zero:

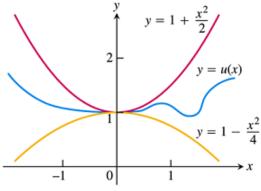
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$$

- (e) The limit of an nth root is the nth root of the limit: $\lim_{x\to c} \sqrt[n]{f(x)} = \sqrt[n]{L}$
- (f) The limit of a power is the power of the limit: $\lim_{x\to c} (f(x))^n = L^n$

The Sandwich Theorem:

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possible at c itself; suppose also that $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$; then, $\lim_{x\to c} f(x) = L$.

Example 4: Any function u(x) whose graph lies in the region between $y = 1 + \frac{x^2}{2}$ and $y = 1 - \frac{x^2}{4}$ has limit 1 as $x \to 0$.



Since $1 + \frac{x^2}{2} \le u(x) \le 1 - \frac{x^2}{4}$ and $\lim_{x \to 0} 1 + \frac{x^2}{2} = \lim_{x \to 0} 1 - \frac{x^2}{4} = 1$; then, $\lim_{x \to 0} u(x) = 1$