Suggested solutions for selected exercises chapter 3 of Pure Mathematics 1 by Hugh Neil and Douglas Qaling.

1.

The domain of the function is the set of numbers for which the function is defined.

a) \(\frac{1}{1 + \sqrt{x}} \) Since the square root of a negative number is not defined in the set of real numbers, the domain of this function is all \(x \geq 0 \).

b) \(\frac{1}{(x - 1)(x - 2)} \); the divisibility by zero has no meaning; or, we say, it is undefined. The answer can be stated as follow: Domain of the function is all \(x \), such as \(x \neq 1 \) and \(x \neq 2 \).

2.

The Domain of these functions are the set of all positive real numbers. That is, negative numbers are not considered in the input (as admissible values for \(x \)). The range of the given function are:

a) for \(f(x) = -5x \) Since the input we consider are positive values of \(x \), the output will always be negative. Answer: \(y < 0 \).

b) for \(f(x) = 3x - 1 \); since the input we consider are positive values of \(x \), being zero the smallest, the output will be \(y > -1 \).

c) for \(f(x) = (x - 1)^2 + 2, y \geq 2 \).

3.

Note: when we take the reciprocal of both sides of an inequality, the sign of the inequality is reversed provided \(a, b, c, d > 0 \). And this is why:

\[
\frac{a}{b} > \frac{c}{d}
\]

Multiply both sides of the inequality by \(bd \):

\[
ad > bc
\]

Divide both sides of the inequality by \(ac \):

\[
\frac{d}{c} > \frac{b}{a}
\]

This result is equivalent to:

\[
\frac{b}{a} < \frac{d}{c}
\]

which is the reciprocal of the original inequality and the inequality sign has been inverted.

a) \(x^{-4} \geq 100 \) it is the same as: \(\frac{1}{x^4} \geq 10^2 \)
Taking the reciprocal of the inequality:

\[x^4 \leq \frac{1}{10^2} \]

We need to know that, the nth (even) root of a number is the modulus of the number: \(\sqrt[n]{x} = |x| \), again, provided \(n \) is even. So, in our case we get:

\[|x| \leq \frac{\sqrt{10}}{10} \]

which leads to:

\[-\frac{\sqrt{10}}{10} \leq x \leq \frac{\sqrt{10}}{10}. \]

b) \(8x^{-4} < 0.00005 \).

\[
\begin{align*}
8x^{-4} &< 5 \cdot 10^{-5} \\
\frac{8}{x^4} &< \frac{5}{10^5} \\
\frac{x^4}{8} &> \frac{10^5}{5} \\
x^4 &> \frac{8 \cdot 10^5}{5} \\
x^4 &> 2^4 \cdot 10^4 \\
|x| &> 20
\end{align*}
\]

Therefore \(x > 20 \) or \(-x > 20 \) which is equivalent to: \(x > 20 \) or \(x < -20 \).

4.

In order to sketch the graphs of the functions, draw a \(xy \) coordinate system using \(k \) as a unit. This is, in the positive side of both axes (\(x \) and \(y \)) we have \(k, 2k, 3k, \) etc; on the negatives, \(-k, -2k, -3k \) etc. Also, let’s pay attention to the highest power of \(x \) and the sign (positive or negative) of the highest coefficient of \(x \).

Then, in a) the parabola opens upwards, the zeros are \(-4k \) and \(-2k \).

b) The power of \(x \) is 3, so the curve takes the shape of the parent function \(y = x^3 \) with zeros at 0, \(k \) and \(5k \).

5.

We are given the equation of three curves (parabolas). Let’s label them as \(y_1, y_2 \) and \(y_3 \). All three curves have one point in common. We set pair of equations in order to determine the point in common between two of them, as follows: \(y_1 \) and \(y_2 \); then \(y_1 \) and \(y_3 \) and finally, \(y_2 \) and \(y_3 \), which are all possible combinations.

Equating \(y_1 \) and \(y_2 \) we get:

\[2x^2 + 5x = x^2 + 4x + 12 \quad \text{or} \quad x^2 + x - 12 = 0 \quad \text{which factorizes as} \quad (x + 4)(x - 3) = 0 \]

Therefore the two curves have two \(x \) coordinate in common: \(x = -4 \) and \(x = 3 \).

let’s pair \(y_1 \) and \(y_3 \):

\[2x^2 + 5x = 3x^2 + 4x - 6 \]
\[x^2 - x - 6 = 0 \]
Whose factors are:

\[(x - 3)(x + 2) = 0\]

given two x-values in common between these two curves:

\[x = 3\] and \[x = -2\]. Indeed we have found that \(x = 3\) is a common x-coordinate; still, let’s verify that \(y_2\) and \(y_3\) have the same point in common:

\[
x^2 + 4x + 12 = 3x^2 + 4x - 6
\]

\[
2x^2 - 18 = 0
\]

Or \(x = \pm 3\). Again, we have found that \(x = 3\) is a common value for all three curves. The y-coordinate can be calculated by substituting in either of the original equations; for instance

\[f(3) = 2(3)^2 + 5(3) = 33\].

The common point is \((3, 33)\).

6.

Since both curves meet at \((-2, 12)\) by evaluating \(f(-2) = 12\) in the equations we can determine the values of \(c\) and \(k\):

\[
f(-2) = 12 = (-2)^2 - 3(-2) + c \quad or \quad c = 2
\]

\[
f(-2) = 12 = k - (-2) - (-2)^2 \quad or \quad k = 14
\]

Therefore our functions are:

\[y = x^2 - 3x + 2 \quad and \quad y = 14 - x - x^2\]

In order to determine the other point at which the two curves meet, we set them equal to one another:

\[
14 - x - x^2 = x^2 - 3x + 2
\]

\[
2x^2 - 2x - 12 = 0
\]

\[(x - 3)(x + 2) = 0 \quad therefore \quad x_1 = -2 \quad and \quad x_2 = 3.
\]

\(x_1 = -2\) was already known to us; so the other point has y-coordinate = 2 since \(f(3) = 2\), the point is \((3, 2)\).

7.

The straight line \(y = x - 1\) meets the curve \(y = x^2 - 5x - 8\) at the points A and B. The curve \(y = p + qx - 2x^2\) also passes through A and B. We are asked to find the values of \(p\) and \(q\).

Setting the two first equations equal to each other, we are able to find A and B:

\[x - 1 = x^2 - 5x - 8 \quad which \ reduces \ to \quad x^2 - 6x - 7 = 0 \quad or \quad (x - 7)(x + 1) = 0
\]

The x-values at which the curves meet are: \(x_1 = 7\) and \(x_2 = -1\). Since \(f(7) = 6\) and \(f(-1) = -2\) points A and B are: \((7, 6)\) and \((-1, -2)\).

Now, by evaluating those points in \(y = p + qx - 2x^2\) we get:

\[f(7) = 6 = p + 7q - 2(7)^2 \quad or \quad p + 7q = 104
\]

\[f(-1) = -2 = p + q(-1) - 2(-1)^2 \quad or \quad p - q = 0
\]

By solving this system of two unknowns, we get: \(8p = 104\) or \(p = 13\), therefore \(q = 13\).

8.

In order to the points at which the line \(10x - 9\) meets the curve \(y = x^2\), again we set the equation equal to each other:

\[10x - 9 = x^2
\]

\[x^2 - 10 + 9 = 0
\]

\[(x - 9)(x - 1) = 0
\]

Therefore \(x_1 = 9\) and \(x_2 = 1\). \(f(9) = 81\) and \(f(1) = 9\). The points of intersection are: \((9, 81)\) and \((1, 9)\).