Selected exercises chapter 3 of Pure Mathematics 1 by Hugh Neil and Douglas Qualing.

1. Find the largest possible domain of each of the following functions:
 a) \(\frac{1}{1 + \sqrt{x}} \)
 b) \(\frac{1}{(x - 1)(x - 2)} \)

2. The domain of these functions is the set of all positive real numbers. Find their ranges:
 a) \(f(x) = -5x \)
 b) \(f(x) = 3x - 1 \)
 c) \(f(x) = (x - 1)^2 + 2 \)

3. For what values of \(x \) are these inequalities satisfied?
 a) \(x^{-4} \geq 100 \)
 b) \(8x^{-4} < 0.00005 \)

4. Given that \(k \) is a positive constant, sketch the graphs of:
 a) \(y = (x + 4k)(x + 2k) \)
 b) \(y = (x - k)(x - 5k) \)

5. Show that the curves \(y = 2x^2 + 5x, \ y = x^2 + 4x + 12 \) and \(y = 3x^2 + 4x - 6 \) have one point in common and find its coordinates.

6. Given that the curves \(y = x^2 - 3x + c \) and \(y = k - x - x^2 \) meet at the point \((-2, 12)\), find the values of \(c \) and \(k \). Hence find the other point where the two curves meet.

7. The straight line \(y = x - 1 \) meets the curve \(y = x^2 - 5x - 8 \) at the points A and B. The curve \(y = p + qx - 2x^2 \) also passes through the points A and B. Find the values of \(p \) and \(q \).

8. The line \(y = 10x - 9 \) meets the curve \(y = x^2 \). Find the coordinates of the points of intersection.