Practice 2 Questions

imathesis.com

By Carlos Sotuyo

Selected exercises chapter 2 of Pure Mathematics 1 by Hugh Neil and Douglas Qualing.

1. Simply the following expressions:

a)
$$\sqrt{8} + \sqrt{18}$$

b)
$$\sqrt{3} + \sqrt{12}$$

c)
$$(\sqrt{2}-1)(\sqrt{2}+1)$$

d)
$$\frac{(2x^2y^{-1})^{-\frac{1}{4}}}{(8x^{-1}y^2)^{-\frac{1}{2}}}$$

e)
$$(2x^6y^8)^{\frac{1}{4}}(8x^{-2})^{\frac{1}{4}}$$

f)
$$\frac{1}{2-\sqrt{3}}$$

g)
$$\frac{(49r^3s^2)^2}{(7rs)^3}$$

h)
$$(2a^2)^3(3a)^2$$

i)
$$3b^{\frac{1}{2}}4b^{-\frac{1}{2}}$$

j)
$$6c^{\frac{1}{4}}(4c)^{\frac{1}{2}}$$

k)
$$(4p^{\frac{1}{4}}q^{-3})^{\frac{1}{2}}$$

l)
$$\frac{(5b)^{-1}}{(8b^6)^{\frac{1}{3}}}$$

2. ABCD is a rectangle in which $AB = 4\sqrt{5}$ cm and $BC = \sqrt{10}$ cm. Giving each answer in simplified surd form, find (a) the area of the rectangle, (b) the length of the diagonal AC.

3. Prove the following mathematical statements:

a)
$$a^m \cdot a^n$$

b)
$$a^0 = 1$$

$$c) \ a^{-m} = \frac{1}{a^m}$$

d)
$$\sqrt[n]{x} = x^{\frac{1}{n}}$$

4. Solve the equation:

a)
$$\frac{3^{5x+2}}{9^{1-x}} = \frac{27^{4+3x}}{729}$$

$$b)4^{2x} \cdot 8^{(x-1)} = 32.$$

$$c)\frac{125^{3x}}{5^{(x+4)}} = \frac{25^{(x-2)}}{3125}.$$

d)
$$3^t \cdot 9^{(t+3)} = 27^2$$
.

e)
$$x^{\frac{3}{2}} = 2\sqrt{x}$$

5. In the diagram, angles ABC and ACD are right angles. Given that $AB=CD=2\sqrt{6}$ cm and BC=7cm, show that the length of AD is between $4\sqrt{6}$ cm and $7\sqrt{2}$ cm.

6. Given that, in standard form, $3^{236} \approx 4 \cdot 10^{112}$, and $3^{-376} \approx 4 \cdot 10^{-180}$, find approximations, also given in standard form, for a) 3^{376} b) 3^{612} c) $(\sqrt{3})^{236}$ d) $(3^{-376})^{\frac{5}{2}}$

7. Express each of the following in the form 2^n .

a)
$$2^{70} + 2^{70}$$

b)
$$2^{-400} + 2^{-400}$$

c)
$$2^{\frac{1}{3}} + 2^{\frac{1}{3}} + 2^{\frac{1}{3}} + 2^{\frac{1}{3}}$$

d)
$$2^{100} - 2^{99}$$

e)
$$8^{0.1} + 8^{0.1} + 8^{0.1} + 8^{0.1} + 8^{0.1} + 8^{0.1} + 8^{0.1} + 8^{0.1} + 8^{0.1}$$