Practice 14

imathesis.com

By Carlos Sotuyo

Suggested solutions for Miscellaneous exercises 10, problems 5-20, pages 153 to 155 from Pure Mathematics 1, by Hugh Neil and Douglas Quailing, Cambridge University Press, 2002.

This is actually a selection taken from practice 14, question 5 to 14.

5.

Redefine 2x as ϕ ; the x interval $0 \le x \le 180$ becomes $0 \le 2x \le 360$ that is $0 \le \phi \le 360$. Then, $3\cos\phi = 2$ implies $\cos\phi = \frac{2}{3}$; therefore, $\cos^{-1}(\frac{2}{3}) = \phi = 48.20$ (using the \cos^{-1} key in scientific a calculator). Now, since $\cos(-\theta) = \cos(\theta)$, then -48.20 is another root. Applying the periodic property of $\cos(\theta \pm 360) = \cos(\theta)$ we have -48.20 + 360 = 311.80. (Adding another 360° will take the angle outside the given interval ($0 \le 2x \le 360$). So, we have $\phi = 48.20^\circ$ and $\phi = 311.80^\circ$; the answer in terms of x° is given by $2x^\circ = \phi$; therefore, the two solutions in the interval are: $x^\circ = \frac{1}{2}\phi$ or $x^\circ = 24.1$ and $x^\circ = 155.9$.

6.

- (a) Period of the tangent and cotangent functions is 180° ; sine $-sin(bx^{\circ})$, and cosine, $cosbx^{\circ}$, have period $T = \frac{360}{b}$; hence, when b = 2, $sin2x^{\circ}$ and $cos2x^{\circ}$ both have period equal to 180°
- (b) $sin3x^{\circ} = 0.5$; interval, 0 < x < 180; redefine $3x^{\circ} = \phi$ that is, ϕ interval is three times x° interval; that is, $0 < \phi < 540$. We know that the angle whose sine is 0.5 is 30° ; or, using the calculator, $sin^{-1}(0.5) = 30^{\circ}$; another solution is based on the property $sin(180 \theta) = sin(\theta)$ which implies that $180 30 = 150^{\circ}$ is another solution. Considering that ϕ interval upper limit is 540° , and applying the periodic property, we have two additional solutions: $30 + 360 = 390^{\circ}$ and 150 + 360 = 510; then, solving for $x^{\circ} = \frac{1}{3}\phi$ we have: $x_1 = 10^{\circ}$; $x_2 = 50^{\circ}$; $x_3 = 130^{\circ}$ and $x_4 = 170^{\circ}$.

7.

Given the interval: $0 \le \theta \le 360$ and the equation $2\cos(\theta+30)^\circ=1$ values of θ in the interval: make $\phi=\theta+30$; our interval becomes $30 \le \phi \le 390$. The equation $2\cos(\phi)=1$ simplifies to $\cos(\phi)=0.5$; the angle whose cosine is 0.5 is 60° : $\cos^{-1}(0.5)=60^\circ$. Another solution for the cosine function is given by $\cos(-\theta)=\cos(\theta)$; however, in our case, -60° in not in the interval under consideration. Let's apply the periodic property, therefore, $-60+360=300^\circ$. $(60+360=420^\circ)$ is outside the interval). Then, solving for $\theta=\phi-30$ we have two solutions for the equation: $x_1=30^\circ$ and $x_2=270^\circ$.

8.

- (a) We know that the cofunctions of complementary angles are equal to each other: $sin(90 \theta) = cos(\theta)$ and $cos(90 \theta) = sin(\theta)$; that is cos(90 2x) = sin(2x) which implies that sin(2x) + cos(90 2x) = sin(2x) + sin(2x) = 2sin(2x).
- (b) Hence, 2sin(2x) = -1. Now, we define $\phi = 2x$, and the interval $0 \le x \le 360$ becomes $0 \le \phi \le 720$. Then, $sin(\phi) = -\frac{1}{2}$ and $sin^{-1}(-0.5) = -30^{\circ}$; which is not in the interval; applying the periodic property of the sine function we get: $-30 + 360 = 330^{\circ}$ and, considering that $sin(180 \theta) = sin(\theta)$ another solution is $180 (-30) = 210^{\circ}$; in addition to these two solutions (300° and 210°) in the interval $0^{\circ}to360^{\circ}$ we have to consider adding 360° —periodic property— since our modified interval spreads from $0^{\circ}to720^{\circ}$; that is: $330 + 360 = 690^{\circ}$ and $210 + 360 = 570^{\circ}$. Now, solving for x° we have: $x^{\circ} = \frac{1}{2}\phi$ which yields $x_1 = 105^{\circ}$, $x_2 = 165^{\circ}$, $x_3 = 285^{\circ}$ and $x_4 = 345^{\circ}$.

We have o find the least positive value —that is, zero is not included— of the angle A for which:

- (a) $sin A^{\circ} = 0.2$ and $cos A^{\circ} < 0$; sine is positive; cosine is negative: II quadrant. Since $sin A^{\circ} = 0.2$; $sin^{-1} = 11.5^{\circ}$ which is located in the I quadrant; in the second quadrant we have: $sin(180 \theta) = sin(\theta)$; that is, $180 11.5 = 168.5^{\circ}$.
- (b) $tan A^{\circ} < 0$, $sin A^{\circ} < 0$: IV quadrant.

 $tanA^{\circ} = -0.5$; therefore, $tan^{-1}(-0.5) = -26.6$; this result is not the least positive value, it is indeed, negative; but -26.6° is coterminal with -26.2 + 360 = 333.4. (c) $cosA^{\circ} = sinA^{\circ}$ both negative. III quadrant. Now, in the I quadrant we know that $cosA^{\circ} = sinA^{\circ} = \frac{\sqrt{2}}{2}$ for $A^{\circ} = 45^{\circ}$; in this case both, sine and cosine are negative, therefore $cosA^{\circ} = sinA^{\circ} = -\frac{\sqrt{2}}{2}$ and since $sin^{-1}(-\frac{\sqrt{2}}{2}) = -45^{\circ}$ applying $sin(180 - \theta) = sin(\theta)$ we get $180 - (-45) = 225^{\circ}$.

(d) $sin A^{\circ} = -0.2275$ $A^{\circ} > 360$ by calculator $sin^{-1}(-0.2275) = -13.15^{\circ}$ The smallest angle whose sine is negative lies in the III quadrant, that is $sin(180 - \theta) = sin(\theta)$, then 180 - (-13.15) = 193.15; but it is given that $A^{\circ} > 360$ thus, applying the periodic property, the answer is: $193.15 + 360 = 553.15^{\circ}$.

10.

- (a) Proving that: $\frac{1}{\sin \theta} \sin \theta \equiv \frac{\cos \theta}{\tan \theta}$. Combining the two terms in the left hand side:
- $\frac{1-\sin^2\theta}{\sin\theta} \equiv \frac{\cos\theta}{\tan\theta}$; from the Pythagorean identity we have: $\cos^2\theta = 1 \sin^2\theta$; then,
- $\frac{\cos^2\theta}{\sin\theta} \equiv \frac{\cos\theta}{\tan\theta}; \text{ rewriting } \cos^2\theta \text{ as } \cos\theta \cdot \cos\theta \text{ realizing that since } \tan\theta = \frac{\sin\theta}{\cos\theta} \text{ then } \frac{\cos\theta}{\sin\theta} = \frac{1}{\tan\theta} \text{ we get:}$
- $\frac{\cos\theta \cdot \cos\theta}{\sin\theta} \equiv \frac{\cos\theta}{\tan\theta}$ that is:
- $cos\theta \cdot \frac{cos\theta}{sin\theta} \equiv \frac{cos\theta}{tan\theta} \text{ which leads to: } \frac{cos\theta}{tan\theta} \equiv \frac{cos\theta}{tan\theta}.$
- (b) $\frac{1-\sin\theta}{\cos\theta} \equiv \frac{\cos\theta}{1+\sin\theta}$

Let's multiply the left hand side by $\frac{(1+sin\theta)}{(1+sin\theta)}$ which produces a difference of two squares $1-sin^2\theta$ in the numerator:

- $\frac{1-sin\theta}{cos\theta}\cdot\frac{(1+sin\theta)}{(1+sin\theta)}\equiv\frac{cos\theta}{1+sin\theta}$
- $\frac{1-sin^2\theta}{cos\theta\cdot(1+sin\theta)}\equiv\frac{cos\theta}{1+sin\theta}\quad\text{considering that, by the Pythagorean identity, }cos^2\theta=1-sin^2\theta\text{, we have:}$
- $\frac{\cos^2\theta}{\cos\theta\cdot(1+\sin\theta)} \equiv \frac{\cos\theta}{1+\sin\theta}$ which simplifies to:
- $\frac{\cos\theta}{(1+\sin\theta)} \equiv \frac{\cos\theta}{1+\sin\theta}$
- (c) $\frac{1}{tan\theta} + tan\theta \equiv \frac{1}{sin\theta cos\theta}$ combining the two terms on the left hand side:
- $\frac{1 + tan^2\theta}{tan\theta} \equiv \frac{1}{sin\theta \cos\theta} \quad \text{we know that} \quad 1 + tan^2\theta = sec^2\theta; \text{ then,}$
- $\frac{sec^2\theta}{tan\theta} \equiv \frac{1}{sin\theta \ cos\theta} \quad \text{substituting} \ \frac{1}{cos^2\theta} = sec^2\theta \quad \text{and} \quad \frac{sin\theta}{cos\theta} = tan\theta, \quad \text{the left hand side becomes:}$
- $\frac{1}{\cos^2\theta \cdot \frac{\sin\theta}{\cos\theta}} \equiv \frac{1}{\sin\theta \, \cos\theta} \quad \text{which simplifies to:}$ $\frac{1}{\sin\theta \, \cos\theta} \equiv \frac{1}{\sin\theta \, \cos\theta}$
- (d) $\frac{1-2sin^2\theta}{cos\theta+sin\theta} \equiv cos\theta-sin\theta$ the left hand side can be rewritten as:

 $\frac{1 - sin^2\theta - sin^2\theta}{cos\theta + sin\theta} \equiv cos\theta - sin\theta; \text{ therefore, considering that } 1 - sin^2\theta = cos^2\theta.$

 $\frac{\cos^2\theta-\sin^2\theta}{\cos\theta+\sin\theta}\equiv\cos\theta-\sin\theta; \text{ the numerator on the left hand side, a difference of two squares, becomes:}$

$$\frac{(\cos\theta-\sin\theta)(\cos\theta+\sin\theta)}{\cos\theta+\sin\theta}\equiv\cos\theta-\sin\theta; \ \ \text{ which simplifies to:}$$

$$\cos\theta - \sin\theta \equiv \cos\theta - \sin\theta$$

11.

The maximum and minimum values of y and the least positive values of x at which these occur:

Note: the cosine and the sine functions $(y = cos\theta, y = sin\theta)$ reach a minimum value y = -1 and a maximum value y = 1; in summary, the range of both functions is $-1 \le y \le 1$.

(a) y = 1 + cos2x reaches a maximum y = 2 whenever cos2x = 1; therefore, x° value is given by: $cos^{-1}(1) = 0$ but we cannot consider zero as a valid solution since we are looking for the least positive values of x; then $0^{\circ} + 360^{\circ} = 360^{\circ}$, thus $2x = 360^{\circ}$ and $x = 180^{\circ}$.

y = 1 + cos2x reaches a minimum value of y = 0 whenever cos2x = -1; and it occurs at: $cos^{-1}(-1) = 180^{\circ}$ therefore, $2x = 180^{\circ}$ or $x = 90^{\circ}$.

(b) y = -4sin(x + 30); maximum, y = 9 occurs at sin(x + 30) = -1 and since $sin^{-1}(-1) = 270^{\circ}$ the x values is given by: $x + 30 = 270^{\circ}$ or $x = 240^{\circ}$.

The minimum value of y=1 occurs at sin(x+30)=1; that is, $sin^{-1}(1)=90^{\circ}$ which implies that $x+30=90^{\circ}$ or $x=60^{\circ}$.

(c) $y = 29 - 20sin(3x - 45)^{\circ}$ reaches a maximum value of y = 49 when sin(3x - 45) = -1; the x° value is given by: $sin^{-1}(-1) = 270^{\circ}$ that is $3x - 45 = 270^{\circ}$ or $x = \frac{270 + 45}{3} = 105^{\circ}$.

Minimum value of y = 9 occurs when sin(3x - 45) = 1; in this case the x° value is given by: $sin^{-1}(1) = 90^{\circ}$; which implies that $x = 45^{\circ}$.

(d) $y = 8 - 3\cos^2 x$ since $\cos^2 x > 0$ both, $(-1)^2 = (1)^2 = 1$; the maximum value of y = 8 is reached when $\cos x = 0$. And, $\cos^{-1}(0) = 90^\circ$; hence, $x = 90^\circ$.

The minimum value of y = 5 occurs when $cos^2x = 1$; which implies that cosx = |1| or $cosx = \pm 1$; since $cos^{-1}(1) = 360^{\circ}$ (least positive value) and $cos^{-1}(-1) = 180^{\circ}$ therefore, the least positive value of x is 180° .

(e) $y = \frac{12}{3 + \cos x}$ this time, the maximum value of y = 6 is reached when the denominator takes its smallest vale at $\cos x = -1$;

that is at $\cos^{-1}(-1) = x = 180^{\circ}$. The minimum value of y = 3 occurs when $\cos x = 1$ therefore $\cos^{-1}(1) = x = 0^{\circ}$. Considering the periodic property of the cosine function the the least positive values of x is $0^{\circ} + 360^{\circ} = 360^{\circ}$.

(f) $y = \frac{60}{1 + sin^2(2x - 15)}$ The function reaches its maximum value, y = 60 when $sin^2(2x - 15) = 0$; that is, $sin^{-1}(0) = x = 0^\circ$.

Solving for x we have: 2x - 15 = 0; hence $x = \frac{15}{2} = 7.5^{\circ}$.

The minimum value y=30 occurs when $sin(2x-15)=\pm 1$; therefore, there are two possibilities: $sin^{-1}(-1)=x=-90^{\circ}$. and $sin^{-1}(1)=x=90^{\circ}$. We takes the least positive vale, 90° ; then, 2x-15=90; hence, $x=\frac{15+90}{2}=52.5^{\circ}$.

12.

(a) $sin\theta = tan\theta$ The equality, $sin\theta = \frac{sin\theta}{cos\theta}$ is true when $cos\theta = 1$ or $sin\theta = 1$; and it occurs when $cos^{-1}(1) = x^{\circ} = 0^{\circ}$ or $sin^{-1}(0) = x^{\circ} = 0^{\circ}$ and $x^{\circ} = 360^{\circ}$.

(b) $2 - 2\cos^2\theta = \sin\theta$ considering the identity $\sin^2\theta + \cos^2\theta = 1$; or $\cos^2\theta = 1 - \sin^2\theta$, and substituting, we obtain:

 $2-2(1-\sin^2\theta)=\sin\theta$ equivalent to:

 $2-2-2sin^2\theta=sin\theta$ which reduces to: $-2sin^2\theta=sin\theta$ equating it to zero in order to factorize the equation:

$$0 = \sin\theta - 2\sin^2\theta$$
$$0 = \sin\theta(1 - 2\sin\theta)$$

Therefore, either $sin\theta = 0$ or $1 - 2sin\theta = 0$; in the first instance we have as solution $sin^{-1}(0) = 0^{\circ}$ also $sin\theta = 0^{\circ}$ in the given interval at $x = 180^{\circ}$ and $x = 360^{\circ}$. The factor $1 - 2sin\theta$ is equal to zero when $sin\theta = \frac{1}{2}$; that is, $sin^{-1}(\frac{1}{2}) = 30^{\circ}$ and, since $sin(180 - \theta) = sin\theta$ another solution is $180 - 30 = 150^{\circ}$.

(c)
$$tan^2\theta - 2tan\theta = 1$$

This equation can be treated as a quadratic equation where the variable, say, x, is equal to $tan\theta$. By making the x substitution and setting it equal to zero we have,

 $x^2-2x-1=0$ then, using the quadratic formula: $x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ where $a=1,\ b=-2$ and c=-1 the solutions are: $x_1=1+\sqrt{2}$ and $x_2=1-\sqrt{2}$. Since we define $x=\tan\theta$, thus $\tan^{-1}(1-\sqrt{2})=-22.5^\circ$ This angle is coterminal with 337.5° which is a solution in the given interval (-22.5+360=337.5). Another solution takes into consideration the periodic property of the tangent function: $\tan(180+\theta)=\tan\theta$, therefore $180+(-22.5)=157.5^\circ$. The root $\tan\theta=1+\sqrt{2}$, leads to $\tan^{-1}(1+\sqrt{2})=67.5^\circ$ and, again by the periodic property of the tangent function: $180+67.5=247.5^\circ$.

(d) $sin2\theta - \sqrt{3}cos2\theta = 0$ since we are dealing with 2θ the given interval, $0 \le \theta \le 360$ becomes $0 \le \theta \le 720$. Then, rearranging the equation, we have:

$$sin2\theta = \sqrt{3}cos2\theta$$
$$\frac{sin2\theta}{cos2\theta} = \sqrt{3}$$
$$tan2\theta = \sqrt{3}$$
$$tan^{-1}(\sqrt{3}) = 60^{\circ}$$

Two other solutions for 2θ result from the periodic property of tangent, $180+60=240^\circ$ and from adding another 360° —we are working in the interval $0 \le \theta \le 720$ —: $60+360=420^\circ$ and, $240+360=600^\circ$. That is, we have four solutions for 2θ , namely: 60° , 240° , 420° , and 600° ; therefore, the corresponding values of $\theta=\frac{1}{2}(2\theta)$ are: 30° , 120° , 210° , and 300° .

13.

- (a) t(x) = tan3x $tan\theta$ has a period of 180°; in this case, $\theta = 3x^{\circ}$; therefore, the period, $T = \frac{180}{3} = 60^{\circ}$.
- (b) Given $tan3x = \frac{1}{2}$ therefore, a solution is $tan^{-1}(\frac{1}{2}) = 26.6^{\circ}$ another solution is given by $tan(180 + \theta) = tan\theta$ that is: $26.6 + 180 = 206.6^{\circ}$ and, the third solution results from adding 360° : $26.6^{\circ} + 360^{\circ} = 386.6^{\circ}$; now, solving for x (we have found solutions for 3x) we have: $x = \frac{1}{3}(26.6) = 8.9^{\circ}$; $x = \frac{1}{3}(206.6) = 68.9^{\circ}$; and $x = \frac{1}{3}(386.6) = 128.9^{\circ}$.
- (c) $tan3x = -\frac{1}{2}$; $tan^{-1}(-\frac{1}{2}) = -26.6^{\circ}$ which is not a solution in the interval under consideration; but, since $tan(180 + \theta) = tan\theta$ we have $180 26.6 = 153.4^{\circ}$ as a solution for 3x; the x values is $x = \frac{1}{3}(153.4) = 51.1^{\circ}$.
- (d) tan3x = 2; therefore, $tan^{-1}(2) = 3x = 63.4^{\circ}$. The x value is given by $x = \frac{1}{3}(63.4) = 21.1^{\circ}$.

14.

(a) We are looking for a function, sine or cosine function, of the type: y = A + Bsinkt. Since the period is 24 hours $k = \frac{360}{24} = 15$; the maximum occurs when sin15t = 1; the minimum, when sin15t = -1; then we set up a simple system of two equations:

$$3.6 = A - B$$
 and $6 = A + B$

If we add these equations together, the terms containing B add up to zero; we obtain:

$$9.6 = 2A$$
 Hence, $A = 4.8$ and, $B = 6 - 4.8 = 1.2$

Our equation is: y = 4.8 + 1.2 sinkt

Note: similarly, we can model the phenomena using the cosine function. Or, instead of y = A + Bsinkt we may use y = A - Bsinkt, considering that the maximum value is reached when sinkt = -1 and the minimum value when sinkt = 1, etc.

(b) Using the same approach as in (a): $k = \frac{360}{10} = 36$; using he equations of the form y = A + Bsin36t our system of two equation is,

$$15000 = A - B \quad \text{and} \quad 28000 = A + B$$

$$43000 = 2A \quad \text{That is,} \quad A = 21500 \quad \text{and,} \quad B = 28000 - 21500 = 6500$$

$$y = 21500 + 6500 sin 36t$$

(c) $k = \frac{360}{360} = 1$; y = A + Bsint The system of two equations:

$$2 = A - B$$
 and $22 = A + B$
 $24 = 2A$ therefore $A = 12$, $B = 10$

Our equation becomes,

$$y = 12 + 10sint$$

15.