3 The diagram shows the graph of \(y = x^n \), where \(n \) is an integer. Given that the curve passes between the points \((2,200) \) and \((2,2000) \), determine the value of \(n \).

4 Find the points of intersection of the curves
 \[y = x^2 - 7x + 5 \quad \text{and} \quad y = 1 + 2x - x^2. \]

5 Find the points of intersection of the line \(y = 2x + 3 \) and the curve \(y = 2x^2 + 3x - 7 \).

6 Find the coordinates of the point at which the line \(3x + y - 2 = 0 \) meets the curve
 \[y = (4x - 3)(x - 2). \]

7 Find the coordinates of any points of intersection of the curves \(y = (x - 2)(x - 4) \) and
 \(y = x(2 - x) \). Sketch the two curves to show the relationship between them.

8 Given that \(k \) is a positive constant, sketch the graphs of
 \begin{align*}
 (a) \quad & y = (x + k)(x - 2k), \\
 (b) \quad & y = (x + 4k)(x + 2k), \\
 (c) \quad & y = x(x - k)(x - 5k), \\
 (d) \quad & y = (x + k)(x - 2k)^2.
 \end{align*}

9 The function \(f \) is defined by \(f(x) = ax^2 + bx + c \). Given that \(f(0) = 6 \), \(f(-1) = 15 \) and
 \(f(1) = 1 \), find the values of \(a \), \(b \) and \(c \).

10 Find the point where the line \(y = 3 - 4x \) meets the curve \(y = 4(x^2 + 5x + 3) \).

11 Sketch the graphs of
 \begin{align*}
 (a) \quad & y = (x + 4)(x + 2) + (x + 4)(x - 5), \\
 (b) \quad & y = (x + 4)(x + 2) + (x + 4)(5 - x).
 \end{align*}

12 A function \(f \) is defined by \(f(x) = ax + b \). Given that \(f(-2) = 27 \) and \(f(1) = 15 \), find the value of \(x \) such that \(f(x) = -5 \).

13 A curve with equation \(y = ax^2 + bx + c \) crosses the \(x \)-axis at \((-4,0)\) and \((9,0)\) and also
 passes through the point \((1,120)\). Where does the curve cross the \(y \)-axis?

14 The curve \(y = ax^2 + bx + c \) passes through the points \((-1,22)\), \((1,8)\), \((3,10)\), \((-2,p)\) and
 \((q,17)\). Find the value of \(p \) and the possible values of \(q \).

15 Show that the curves \(y = 2x^2 + 5x \), \(y = x^2 + 4x + 12 \) and \(y = 3x^2 + 4x - 6 \) have one point
 in common and find its coordinates.

16 Given that the curves \(y = x^2 - 3x + c \) and \(y = k - x - x^2 \) meet at the point \((-2,12)\), find
 the values of \(c \) and \(k \). Hence find the other point where the two curves meet.

17 Find the value of the constant \(p \) if the three curves \(y = x^2 + 3x + 14 \), \(y = x^2 + 2x + 11 \) and
 \(y = px^2 + px + p \) have one point in common.

18 The straight line \(y = x - 1 \) meets the curve \(y = x^2 - 5x - 8 \) at the points \(A \) and \(B \). The curve
 \(y = p + qx - 2x^2 \) also passes through the points \(A \) and \(B \). Find the values of \(p \) and \(q \).

19 The line \(y = 10x - 9 \) meets the curve \(y = x^2 \). Find the coordinates of the points of
 intersection.